Performance enhancement strategies for multi-block overset grid CFD applications

نویسندگان

  • M. Jahed Djomehri
  • Rupak Biswas
چکیده

The overset grid methodology has significantly reduced time-to-solution of highfidelity computational fluid dynamics (CFD) simulations about complex aerospace configurations. The solution process resolves the geometrical complexity of the problem domain by using separately generated but overlapping structured discretization grids that periodically exchange information through interpolation. However, high performance computations of such large-scale realistic applications must be handled efficiently on state-of-the-art parallel supercomputers. This paper analyzes the effects of various performance enhancement strategies on the parallel efficiency of an overset grid Navier-Stokes CFD application running on an SGI Origin2000 machine. Specifically, the role of asynchronous communication, grid splitting, and grid grouping strategies are presented and discussed. Details of a sophisticated graph partitioning technique for grid grouping are also provided. Results indicate that performance depends critically on the level of latency hiding and the quality of load balancing across the processors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Load Balancing Strategies for Multi-Block Overset Grid Applications

The multi-block overset grid method is a powerful technique for high-fidelity computational fluid dynamics (CFD) simulations about complex aerospace configurations. The solution process uses a grid system that discretizes the problem domain by using separately generated but overlapping structured grids that periodically update and exchange boundary information through interpolation. For efficie...

متن کامل

An Analysis of Performance Enhancement Techniques for Overset Grid Applications NAS-03-008

The overset grid methodology has significantly reduced time-to-solution of high-fidelity computational fluid dynamics (CFD) simulations about complex aerospace configurations. The solution process resolves the geometrical complexity of the problem domain by using separately generated but overlapping structured discretization grids that periodically exchange information through interpolation. Ho...

متن کامل

An Analysis of Performance Enhancement Techniques for Overset Grid Applications

The overset grid methodology has significantly reduced time-to-solution of high-fidelity computational fluid dynamics (CFD) simulations about complex aerospace configurations. The solution process resolves the geometrical complexity of the problem domain by using separately generated but overlapping structured discretization grids that periodically exchange information through interpolation. Ho...

متن کامل

Dynamic Overset Grid Computations for CFD Applications on Graphics Processing Units

The objective of the present work is to discuss the development of a 3D Unstructured-Overset grid Computational Fluid Dynamics (CFD) solver on General Purpose Graphics Processing Units (GPGPUs). As an extension of our previous work on 2D/3D overset grid computations for compressible/incompressible ows on static grids[1][2], the current paper focuses on moving overset grids with dynamic domain c...

متن کامل

Discrete Adjoint Approach for Aerodynamic Sensitivity Analysis and Shape Optimization on Overset Mesh System

In the present talk, the strategies to apply the sensitivity analysis method to aerodynamic shape optimization problems of complex geometries are intensively discussed. To resolve the design of complicated aircraft geometries such as high-lift devices, wing/body configurations, overset mesh techniques are adopted. In addition, a noticeable sensitivity analysis method, adjoint approach, which sh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Parallel Computing

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2003